

ECCMID 2015 Copenhagen, Denmark 25 – 28 April 2015

Synthetic Novel Host Defense Protein Mimetics for the Treatment of Gram-Negative Bacterial Infections

Abstract 0169; Presentation 0082; Hall C, 2:30 pm

April 26, 2015

Synthetic Novel Host Defense Protein Mimetics for the Treatment of Gram-Negative Bacterial Infections

Author Disclosures

<u>Author</u>	<u>Category</u>	<u>Affiliation</u>	<u>Location</u>
Siya Ram	Employee	Cellceutix Corporation	Beverly, MA, USA
Krishna Menon	Employee	Cellceutix Corporation	Beverly, MA, USA
Richard Scott	Consultant	Fox Chase Chemical Diversity Center	Doylestown, PA, USA
Karima Chafai-Fadela	Employee	Cellceutix Corporation	Beverly, MA, USA
David Brennan	Employee	Cellceutix Corporation	Beverly, MA, USA
William DeGrado	NTD*	University of California at San Diego	San Diego, CA, USA
Damian Weaver	NTD*	Fox Chase Chemical Diversity Center	Doylestown, PA, USA
Katie Freeman	NTD*	Fox Chase Chemical Diversity Center	Doylestown, PA, USA
Gregory Tew	NTD*	University of Massachusetts	Amherst, MA, USA
William Weiss	NTD*	University of North Texas	Ft. Worth, TX, USA
Ashok Kumar	Employee	Cellceutix Corporation	Beverly, MA, USA
Sylvia A. Holden	Employee	Cellceutix Corporation	Beverly, MA, USA

Antimicrobial Program; Background

Develop small <u>non-peptidic</u>, <u>fully synthetic</u> mimics of the Host Defense Proteins (HDPs) as systemic and topical agents

Novel approach for bactericidal activity

Clinical lead: Brilacidin: Completed two Phase 2 clinical studies for ABSSSI

HDPs are small antimicrobial peptides

Expression widespread in the animal kingdom

Produced in skin, mucosal surfaces, neutrophils

Target microbial membrane

First line of defense against bacterial invasion

Part of innate immunity

Maintenance of epithelial barrier function

Regulate microbiota

Immuno-modulatory activities – link innate and adaptive immunity

HDP dysfunction implicated in disease

IBD, atopic dermatitis, acne, otitis media, cystic fibrosis...

HDP Mimetics: Lead Clinical Program-Brilacidin

Phase 1:

One single and two multi-dose studies

Pharmacokinetics/Pharmacodynamics

Concentration-dependent killing

Highly active vs. Staph aureus (MRSA and MSSA)

Half-life of ~ 15-23 hours

Short-course and single-dose regimens possible

Phase 2:

Two studies in ABSSSI (Phase 2a and 2b)

Brilacidin dosed in >300 patients

Multiple dosing regimens explored, including single-dose

Safe and generally well tolerated

Efficacy in brilacidin regimens comparable to 7 days of daptomycin

Phase 3:

Plan to start phase 3 with single-dose regimen

Design Approach

The biological activities of host defense proteins depend on an amphiphilic helix

Biomimetic Polymer

Capture structural and biological properties of HDPs using fully synthetic, nonpeptidic scaffolds and sidechains

Not peptidomimetics

Advantages: Mimetic Approach

Narrow and broad-spectrum antimicrobial agents have been produced

0.5 to 2 μg/ml MICs vs Gram-positives

0.5 to 8 μg/ml MICs vs Gram-negatives

Wide selectivity for bacteria over mammalian cells

Significant improvements in cytotoxicity versus HDPs

>100 to 1,000 fold selectivities

Medicinal chemistry enables "fine-tuning" for specific activities

Straightforward synthesis

Common starting materials

Share important antimicrobial properties with HDPs

Rapidly bactericidal; time-kills 0.5 to 6 hrs

Low potential for resistant development; 20 serial passage assays and fsr $< 10^{-11}$

Metabolically stable and active in vivo

Mechanism of Action: Membrane Target

Membrane activity in Gram-positive and Gram-negative organisms supported by

- > Coarse grain molecular dynamic simulations
- ➤ Vesicle leakage assays
- > Membrane permeabilization and potentiation assays
- Transcriptional profiling, proteomics and deep sequencing
- > Transmission electron microscopy

TEM of *P. aeruginosa* on SMAP29 (3 hrs)

Brogden, K. 2005. Nature Reviews, Microbiology *3*: 238 (2005)

Cidal concs. of a HDP mimic cause visible signs of vesiculation (blebbing) at the E. coli membrane.

Similar morphological response reported for SMAP29 and P. aeruginosa.

60 minutes; 10x MIC concentrations

Gram-Negative Activity

6 Distinct series active against target pathogens with low cytotoxicity

E. coli, K. pneumoniae, P. aeruginosa and A. baumannii; MICs 3.13 μg/ml or less

Advances in defining structure-activity relationships

Balance of lipophilicity (LogD) and the number of positive charges Incorporation of heteroatoms in side chain linkages and limitation of the torsional degrees of freedom

		MIC (μg/mL)						Cytotoxicity		oxicity		
РМХ	Series	A. bauı	mannii	P. aeru	ginosa	K. pneu	ımoniae	E. coli			MTD (mg/kg)	
		BAA747	19606	10145	27853	13883	700603	25922	3T3	HG2		
100	Urea	3.13	12.5	3.13	0.78	0.78	6.25	0.78	128	145	17	
229	Aryl Amide I	3.13	25	6.25	3.13	0.78	3.13	1.56	727	684	20-26	
519	Aryl Amide II	1.56	6.25	1.56	0.78	0.78	0.78	0.78	430	>1000	17	
633	Tricyclic	3.13	3.13	3.13	1.56	0.78	3.13	3.13	131	100	6.4	
1091	Aryl Amide II	1.56	6.25	3.13	1.56	1.56	3.13	3.13	389	724	19-26	
1142	Urea	3.13	>25	0.78	0.39	1.56	3.13	3.13	246	225	15	
1241	Triaryl	6.25	12.5	3.13	3.13	0.39	1.56	3.13	115	138	5.7	
1442	Aryl Amide II	3.13	6.25	6.25	3.13	0.78	0.78	0.78	181	601	40	
1445	Aryl Amide II	3.13	12.5	3.13	1.56	6.25	12.5	3.13	973	>1000	20-30	
1555	Benzimidazole	3.13	>25	3.13	1.56	3.13	3.13	3.13	102	391	20	

Carbepenem-Resistant Enterobacteriaceae (CRE) Urgent Public Health Threat in U.S, Europe, and the World

CDC, Antibiotic Resistance Threats in The United States, 2013

International dissemination of *Klebsiella pneumoniae* carbapenemase (KPC)—producing *Enterobacteriaceae*.

Clinical Infectious Diseases 2011;53(1):60-67

Expansion of healthcare-associated carbapenem-non-susceptible *Enterobacteriaceae* in Europe: epidemiological scale and stages by country, as of July 2010

Country	Stage	Epidemiological scale	Documented introduction from abroad	Dominant class	Underreporting		
Greece	_	Endomia	Vac	KPC/VIM			
Israela	5	Endemic	Yes	KPC			
Italy		Interregional appead	Vac	KDC			
Poland	4	Interregional spread	Yes	KPC	Likely		
France						KPC	
Germany	3	Regional spread	Yes	OXA-48/VIM	Likely		
Hungary	7		Î	KPC	Likely		
Belgium				VIM	Likely		
Spain	2b	Independent hospital outbreaks	Yes	KPC/VIM/IMP	Likely		
England and Wales	7	outbreaks		NDM			
		 			†		

Eurosurveillance: http://www.eurosurveillance.org

Susceptibility of Drug-R Pathogens;

E.Coli O104:H4; 2011 Germany Outbreak

PMX Compound	Series	O104:H4 Clinic MIC (Cytotoxicity EC ₅₀ (µM)		
		BAA – 2326	BAA – 2309	3T3	HG2
100	AR	0.78 – 1.56	1.56 – 3.13	128	145
183	AA	0.78 – 3.13	1.56 – 3.13	139	227
223	AA	0.78 – 3.13	0.78 – 3.13	178	480
brilacidin	AA	0.78 - 1.56	0.78 – 3.13	727	684
247	AA	1.56	0.78 - 3.13	27	71
519	AA	1.56	0.78 - 3.13	430	1000
843	AA	1.56	1.56 – 3.13	79	131
1091	AA	1.56 – 3.13	1.56 – 3.13	389	724
1099	AR	1.56	1.56	57	106
1278	TA	0.39 - 0.78	0.78	192	>1000
1363	AA	0.78 - 1.56	1.56 – 3.13	422	262
1405	BZ	1.56	0.78 – 1.56	>1000	913

Potent activity against enteroaggregative, shiga toxin-producing *E. coli* evident across multiple structural series with low cytotoxicity

AA: Arylamide; AR: Arylurea; TA: Triaryl; BZ: Benzimidazole; MICs (μ g/mL); 3T3: mouse fibroblast (EC₅₀ μ M); HG2: human transformed liver cell (EC₅₀ μ M) * USDA

Susceptibility of Drug-R Pathogens;

ndm-1 *K. pneumoniae*

	MICs (µ	ıg/ml) vs. <i>K. pneumonia</i>	ae strains
Compound	ndm-1	2 ATCC strains	5 clinical isolates
	(BAA 2146)	(non-ndm-1)	(non-ndm-1)
868	0.78	0.39	ND
1090	0.78	0.78	ND
100	1.56	0.39	1 - 4
223	1.56	0.78	1 - 2
225	1.56	1.56	2 - 4
183	3.13	0.39	1 - 2
668	3.13	1.56	4
519	3.13	1.56	2
brilacidin	3.13	0.78	1 - 2
polymyxin B	0.78	ND	ND
tigecycline	6.25	ND	ND
ceftriazone	>100	ND	ND
meropenem	>100	ND	ND
ND: Not Done			

ndm-1 phenotype does not influence susceptibility to HDP mimics

Animal Efficacy vs. E. coli; Mouse Thigh Burden model

Screening model for *in vivo* efficacy: Mouse thigh burden Promising new series showing robust activity identified; the triaryls PMX1241 and 3 other triaryls are highly active vs. *E. coli* in the TBM

Model:

- T = 0; neutropenic CD-1 mice are infected with 1.3 x 10⁵ cfus E. coli 25922 in thigh muscles
- T = 1 hr: test agent administered IV 1x or 2x/day
- T = 24 hrs: Thighs are harvested for quantitation of tissue burden

Activity profiles of lead compounds active vs. K. pneumoniae

	MIC (μg/ml)											Cytotoxicity (EC ₅₀ , μM)		
Cmpd	EC (25922)	EC (25922) +40%ms	SA (27660)	SA (27660) +40%ms	EF (29212)	PA (10145)	KP (13883)	KP (13883) +40%ms	AB (17978)	AB (BAA- 1605)	AB (19606)	HepG2	NIH3T3	FW
1278	0.78	12.5	0.39	3.13	6.25	25	0.78	12.5	25	50	50	192	>1000	773
1741	0.78	3.13	0.39	0.78	3.13	25	0.2	6.26	50	50	>50	463	697	909
1807	0.39	0.78	0.39	0.39	1.56	>50	0.39	1.56	25	>50	>50	181	472	859

EC: *E. coli* 25922; SA: *S. aureus* 27660; EF: *E. faecalis* 29212; PA: *P. aeruginosa* 10145; KP: *K. pneumoniae* 13883; AB: *A. baumannii* 17978, BAA-1605, 19606; HepG2: human transformed liver cells; NIH3T3: mouse 3T3 fibroblasts; FW: Formula molecular weight (salt form); ms: mouse serum; NT: Not Tested; All MIC assays were conducted according to Hancock modifications of CLSI guidelines for cationic compounds. Cytotoxicity was measured in XTT assays for metabolic activity (Promega).

Active vs. *E.coli, K. pneumoniae* and Gram-positives in absence and presence of serum Little activity vs. *A. baumannii* or *P. aeruginosa* Good cytotoxicity profile vs. mammalian cells (> 100 fold selectivity)

Activity Lead Compounds vs. MDR K. pneumoniae strains

	MIC (μg/ml)											
	•	on UNT180-1 (PC isolate)		•	on UNT153-1 Kpn UNT024-1 KPC isolate) (Drug-susceptible str			Kpn UNT127-1 (ndm-1 isolate)				
Cmpd	МНВ	MHB + 40% MS	MHB + 5% MS	МНВ	MHB + 40% MS	MHB + 5% MS	МНВ	MHB + 40% MS	MHB + 5% MS	МНВ	MHB + 40% MS	MHB + 5% MS
1807	2	2	2	2	2	4	1	2	2	1	4	2
1741	2	2	2	4	8	4	2	2	8	4	4	8
1278	4	16	2	> 16	> 16	> 16	1	4	4	> 16	2	4

UNT180-1: KPC producer; UNT153-1: KPC producer; UNT024-1: ATCC43816; UNT127-1: ndm-1 producer. Kpn: Klebsiella pneumoniae. MHB: Mueller Hinton broth. ms: mouse serum. All MIC assays were conducted under CLSI guidelines.

-Compounds are active vs. Drug-S and CRE organisms

-Serum has little impact on activity of 1807 and 1741

Efficacy in Mouse Thigh Burden Model; IV and SC Dosing

<u>Model</u>:

- T = 0; neutropenic CD-1 mice are infected with 1.0×10^5 cfus Kp in thigh muscles
- T = 2 hr: test agent administered SC or IV
 1x or 2x/day
- T = 26 hrs: Thighs are harvested for quantitation of tissue burden

Klebsiella pneumoniae 13883

Mouse Lung Infection Model; CC-1807

T = 0 hrs: Infect intranasally w/ 6.53 log_{10} CFU K. pneumoniae 43816

T = 2 hrs: Treat with test agent SC; 1 day for burden and 4 days for survival

T = 24 hrs: Harvest lung tissue for burden measurements (n = 10/group)

T = 0 - 160 hrs: Score for survival (n = 10/group)

Significant reduction in lung burden at all doses of CC-1807 Partial survival effect; toxicity evident at highest dose Dose optimization in progress

Clinical Isolate Screen w/ CC-1807 vs. Enterobacteriaceae spp.

Activity vs. recent collection of clinical isolates

Organism		MIC ₉₀ (μg/ml, CLSI)					
(20 isolates)	CC-1807	Levofloxacin	Gentamicin	Meropenem			
Escherichia coli	0.25	>4	32	0.015			
Klebsiella pneumonia	1	>4	1	4			
Enterobacter spp.	1	0.5	0.5	0.25			

Activity vs. MDR* *Enterobacteriaceae* clinical isolates

Organism	MIC ₉₀ (μg/ml, CLSI)										
Organism	CC-1807	Levofloxacin	Gentamicin	Meropenem							
Escherichia coli (4 isola	Escherichia coli (4 isolates)										
MIC range	≤0.06 – 0.12	>4	1 - >64	0.008 - 0.03							
Klebsiella pneumonia (Klebsiella pneumonia (8 isolates)										
MIC range	0.25 – 1	>4	≤0.06 ->64	0.06 - >4							
Enterobacter cloacae (3	3 isolates)										
MIC range	0.25 - 2	2 - >4	0.25 ->64	0.25 - >4							
MDR Enterobacteriace	ae (15 isolates)										
MIC range	≤0.06 – 2	2 - >4	≤0.06 ->64	0.008 - >4							
MIC ₅₀	0.5	>4	64	0.5							
MIC ₉₀	2	>4	>64	>4							

^{*} resistant to ≥ 3 antibiotic classes, including carbapenems

Summary HDP Mimics for Gram-Negative Infections Including CRE Strains

- ➢ Gram-negative activity evident in several structural series of small non-peptidic mimetics of host defense proteins
- > 2 series show low cytotoxicity, favorable PK properties and robust efficacy in vitro and in vivo against Enterobacteriaceae organisms
- CC-1807 is potently active against clinical isolates of *E. coli, K. pneumoniae* and *E. cloacae*, including MDR CRE strains
- > Additional preclinical efficacy studies with CC-1807 are in progress
 - Dose optimization in lung infection models
 - UTI and bacteremia
- > CC-1807 is negative at 30 μM in in vitro manual patch clamp hERG assay
- > LPS-neutralizing activity also evident in the CC-1807 and other series
- Chemical optimization of CC-1807 and additional analogs is continuing
 - > Expand coverage to *Pseudomonas* and *Acinetobacter* spp.

Other Cellceutix Presentations *ECCMID 2015*

cellceutix

Cellceutix Corporation Beverly, MA USA www.cellceutix.com

ECMIID 2015 Copenhagen, Denmark 25 – 28 April 2015

A Randomized, Double-Blind Study Comparing Single-Dose and Short-Course Brilacidin to Daptomycin in the Treatment of Acute Bacterial Skin & Skin Structure Infections (ABSSSI)

Presentation 2969, Hall J, 4:00pm

April 27, 2015

e-Poster #EV0201

Oral Presentation #0195

